Tori_and_geometry Algebraic_torus
1 tori , geometry
1.1 flat subspaces , rank of symmetric spaces
1.2 q-rank of lattices
1.3 buildings
tori , geometry
flat subspaces , rank of symmetric spaces
if
g
{\displaystyle g}
semisimple lie group real rank
r
{\displaystyle \mathbb {r} }
-rank defined above (for
r
{\displaystyle \mathbb {r} }
-algebraic group group of real points isomorphic
g
{\displaystyle g}
), in other words maximal
r
{\displaystyle r}
such there exists embedding
(
r
×
)
r
→
g
{\displaystyle (\mathbb {r} ^{\times })^{r}\to g}
. example, real rank of
s
l
n
(
r
)
{\displaystyle \mathrm {sl} _{n}(\mathbb {r} )}
equal
n
−
1
{\displaystyle n-1}
, , real rank of
s
o
(
p
,
q
)
{\displaystyle \mathrm {so} (p,q)}
equal
min
(
p
,
q
)
{\displaystyle \min(p,q)}
.
if
x
{\displaystyle x}
symmetric space associated
g
{\displaystyle g}
,
t
⊂
g
{\displaystyle t\subset g}
maximal split torus there exists unique orbit of
t
{\displaystyle t}
in
x
{\displaystyle x}
totally geodesic flat subspace in
x
{\displaystyle x}
. in fact maximal flat subspace , maximal such obtained orbits of split tori in way. there geometric definition of real rank, maximal dimension of flat subspace in
x
{\displaystyle x}
.
q-rank of lattices
if lie group
g
{\displaystyle g}
obtained real points of algebraic group
g
{\displaystyle \mathbf {g} }
on rational field
q
{\displaystyle \mathbb {q} }
q
{\displaystyle \mathbb {q} }
-rank of
g
{\displaystyle \mathbf {g} }
has geometric significance. 1 has introduce arithmetic group
Γ
{\displaystyle \gamma }
associated
g
{\displaystyle \mathbf {g} }
, group of integer points of
g
{\displaystyle \mathbf {g} }
, , quotient space
m
=
Γ
∖
x
{\displaystyle m=\gamma \backslash x}
, riemannian orbifold , hence metric space. asymptotic cone of
m
{\displaystyle m}
homeomorphic finite simplicial complex top-dimensional simplices of dimension equal
q
{\displaystyle \mathbb {q} }
-rank of
g
{\displaystyle \mathbf {g} }
. in particular,
m
{\displaystyle m}
compact if , if
g
{\displaystyle \mathbf {g} }
anisotropic.
note allows define
q
{\displaystyle \mathbf {q} }
-rank of lattice in semisimple lie group, dimension of asymptotic cone.
buildings
if
g
{\displaystyle \mathbf {g} }
semisimple group on
q
p
{\displaystyle \mathbb {q} _{p}}
maximal split tori in
g
{\displaystyle \mathbf {g} }
correspond apartments of bruhat-tits building
x
{\displaystyle x}
associated
g
{\displaystyle \mathbf {g} }
. in particular dimension of
x
{\displaystyle x}
equal
q
p
{\displaystyle \mathbb {q} _{p}}
-rank of
g
{\displaystyle \mathbf {g} }
.
Comments
Post a Comment